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1.0 INTRODUCTION

As radar systems designs become more complex and versatile, their per-
formance becomes increasingly sensitive to the operational environment. This
places an increased burden on the designer to incorporate the efﬁects of the
environment in system design studies. However, before this can be done, it is
necessary to develop an accurate model of the environment. In tée case of
ground clutter or multipath, this means that there is a need for rough sur-
face scattering models. Such mo&els wmust not only be based upon ;;und physi-
cal principles but also exhibit agreement with measurements.

The purpose of this study is to provide improved models for surface scat-
tering from terrain in the microwave frequency range and near grazing inci-
dence. The basic approgch entails applying the composite surface scattering
theory to a lossy, randomly rough, dielectric surface. As long as the inci-
dent energy is not too near grazing and the surface is reasonably free of
sharp edges or cusps, the composite model should be a reasonable description
of the scattering process. Since the composite model is based upon the combin-
ing of two asymptotic scattering theories, it is approximate. Thus, an addi-
tional goal of this study is to investigate new techniques for improving the
composite model. As our understanding of the scattering process increases
and the models become more accurate, complex factors such as vegetation and
anow cover can be studled, analyzed, and incorporated into the basic model.
Thus, the overall effort comprises a phased approach.

This interim report details the initial results of the study. Present
and future efforts on this investigation will be concerned with a more detailed

study of some of the results reported here and also obtaining improved models

for the coherent or average scattered field.
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1,1 Summary of Results

Section 2 corrects an error in the basic composite scattering model.
In particular, it is shown that shadowing is improperly accounted for and this
error 1s corrected. In the corrected version of the composite mqdel, it is
shown that the conventional shadowing function multiplies both the zeroth and
first order incoherent scattered power perturbation terms. Thus, even for a
perfectly conducting surface the first order term will go to zero for back-
scattering at grazing incidence éue to the shadowing function. The first

order perturbation power suffers an additional attenuation due to the shadow-

ing of unfavorably oriented large scale surface slopes; however, this effect
is relatively small compared to the impact of the conventional shadowing func-
tion.

Section 3 demonstrates how the shadowing function for non-Gaussian may

be quite easily obtained from existing shadowing theories. The important

surface characteristic in the general case is the probability density func-

tion of the large scale slopes in the plane of incidence. Explicit results

are obtained for a surface characterized by roughness whose probability den-
sity funct;on is exponential. The results of this study are particularly im-
portant for terrain scattering because terrain cannot always be described by
a Gaussian height probability density function.

Section 4 extends the composite model to bistatic scattering from a
lossy, dielectric, rough surface. The details are presented for three cases
of increasing complexity; backscattering from a surface with only small scale
roughness, bistatic s;attering from a surface with only small scale roughness,
and, finally, bistatic scattering from a composite (large and small scales of
roughnesa) surface. This approach is a logical progression from the simple

to the complex and is therefore beneficlial to the reader. Furthermore, this




approach facilitates checking the results of the perturbation thepty against
existing solutions. i

Section 5 discusses one technique for relating the joint probability
density function of the surface heights to the joint dehsity function for the
slopes. The technique was originally obtained from an analysis of optical
scattering from a rough surface but its relevance to this problem has apparently
been overlooked. Although the technique is not always applicable to measured

data, there are cases where it can provide the desired transformation.




2,0 A CORRECTION TO THE COMPOSITE SURFACE SCATTERING MODEL

2.1 Background

In [1], a solution to the problem of backscattering from a randomly rough,
perfectly conducting surface comprising both large and small scales of rough-
ness was presented. As a direct consequence of the stipulation that the sur-
face roughness was a zero mean jointly Gaussian process, the scatpering cross
section per unit area was determined to be the sum of two terms, }.e.

Gt (8:0) = 102, (8,6)]  + [ap:,(e,q>)11 . The [0%(8,¢)]y contribution is
dominant near normal incidence and results from the shadow corrected optical
like reflection from properly oriented facets or specular points on the sur-
face. The [Op;,(e,d))]1 term is due to Bragg resonance scattering from the
small scale surface feagures with appropriate accounting for the resonance
broadening effects of the large scale surface undulations. Although shadowing
is formally accounted for in a correct manner in the [0p:,(8,¢)]1 term,
there is an error in the exact representation of the shadowing function which
leads to an incorrect estimate of the effects of shadowing on large angle of
incidence scattering. The goal of this section is to correct the above error

and to properly account for the effect of large scale shadowing on the small

scale scattering term.

2.2 Discussion of the Error

The analysis presented in [1] relating to the determination of [cpp,(0,¢)]1
is correct up to and including equation (23). The problem with the analysis
following (23) is a result of inadequate attention to the definition of the
shadowing function R(6,¢) . That is, R(6,4) , as it appears in (23) of [1],

can and should be expressed as follows;
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where
(0)(* ) o (0)( )
. AN CH LSS LR G CH LFL L% >c @.2) '
L f
' is the probability that an incident ray having direction ﬁi will intersect a i

point on the large scale surface with orthogonal slopes Clx and Ciy and will
not be shadowed by‘any other part of the surface regardless of th; height Cl
of the point in question. The symbol <t>cz in (2.2) denotes th;.ensemble
average over all values of large fcale height Cl and the notation P(o)(-)
is the same as that employed by S;ncer [2] in his excellent analysis of the

effect of shadowing on [Op;,(9,¢)]0 « It should be noted that as a result

of the integrations in (23) of [1], the shadowing function R(6,¢) is equal

to P(o)(-) evaluated at the specific large scale slope values given by

o ™ kox/B and ng = koy/B where kox = —2kosin.6cos ¢, koy = —Zkosin.esintb,

B= 2kocos 8, ® 1is the angle of incidence relative to the normal to the mean
(¢=0) plane, and ¢ 1s the azimuth direction of incidence.
In order to more clearly understand and therefore rectify the error in

{1]), it is beneficial to repeat equation (23) of [1], i.e.

- -]

1

k k k k
'y - - ~ 0X oX 0! 02 )
exp ( jkoxAx jkoyAy) dAx dby = R(0,0) fpp ' ( 3 * B ° B B

' L 2 2.3
Ty ffew{-j(koxl\x +k°yAy) -4k cos” 8T [1- pZ(Ax'Ay)J } dAxdAy
T (2.3)
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where Ax = X, =%, and Ay=y2-yl . In (2.3) I(x1 ,yl) is one if the point
2 2
(xl ,y1 ,ckl) on the large scale surface having slopes ch and czyl is

1
2 2 2 2

illuminated and zero if it is shadowed. The function fpp' is defined in [1],

;_12- is the mean square height of the large scale surface, and p{z(') is the
normalized autocorrelation function of the large scale surface height. Tt
should be noted that the left hand side of (2.3) represents the F?urier trans-
form of the <°*> term (from AxAy-space to koxkoy-space) and (2.3) is
supposed to show where the transform variables appear in the result. Such know-
ledge is essential to accomplishing the convolution of (2.3) with the small
scale surface height spectrum because this convolution determines lop;']l .
That is, in the convolu{ion kox and koy must be replaced by kox-kx and
koy-ky where kx and ky are the new variables of integration (see (32) of
in.

If R(0,¢) in (2.3) had been replaced by its precise definition, as given
by (1), the problem of determining where kox and koy appear in the right
hand side of (2.3) would have been correctly solved. Unfortunately, this was
not done. Instead, R(8,¢) was incorrectly written as (1+C0)-l and, through
the use of trigonometric manipulations, Co was expressed in terms of kox and
koy » see equations (24) through (28) in [l1]. This development failed to rec-
ognize that C0 does not, in general, depend upon the transform variables in
(2.3). That is, if one changes the transform variables from kox to kx and
from koy to ky s Co would still only depend on k0x= -2k° sinBcos ¢ and
koy'= -2kosin 6sin¢d . The primary consequence of this error is to provide an
incorrect formula for R(*) for use in all equations following (28) in (1].

As will be shown, this error fortunately has negligible consequence on the

unumerical results presented in [1].




2.3 Correct Analysis

The error identified and enfplained above can be rectified by determining
the functional dependence of the right hand side of (2.1) upon the large scale
j slopes CR.x and c!.y since they are replaced by the transform \(griables kox
and koy . This can be done in a relatively straightforward manngr by general-
izing Smith's [3] results to the case where k, 1s at an angle _'lr/2 -¢ with

i
respect to the y-axis rather than directly along the y-axis. Such a general-

ization leads to the following;

c ooy - U(ctnd - ;R,x cos ¢ - c!.y sin ¢)
x> >Ry 1+ c,

1 p® &, (2.4)

where Co is given by (24) of [1] and U(*) 1s the unit step function which
3 is one 1if the argument i8 positive and zero if the argument is negative. Of
x particular note in (2.4) is the fact that c!.x and l;zy only appear in the

argument of the unit step function. Substituting (2.4) into (2.1) yields the

correct expression for R(8,¢) , i.e. g
k k
f U(cme-—;}-costb-—glsinzb)
E |
1+ Co

] R(8,4) = @2.5)
!

If one substitutes k =-2k s8infcos¢ and k =-2k sinOsin¢ 1in (2.5)
ox o .oy o

3 such as required in the determination of [t:Jp;,]0 , then R(0,¢) = (1 + Co)-1

; and it will depend only on the angles 6 and ¢ and the mean square slopes
§ . i
g Czi and 69‘; of the large scale surface (see equations (24) and (25) of [1]).

; However, in the convolution expression for [Op:,]l, the unit step function
must be retained. That is, one must use the following relationship;

k -k k -k

oX X - oy Y.
kK -k kK -k UGt“e'[Zk cose]c°8¢ [Zk cose]sm‘p)
(ox x oy v ). 0 °

2k cos8 * 2k cos®
o ()

i e et =

s e AL

1+¢C
o

(2.6)
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Equation (2.6) leads to a completely different interpretation of the ef-

fects of large scale shadowing on [Gp:,]1 from that erroneously presented in

f1]. According to (2.6), shadowing now gives rise to an attenuation factor ,
-1 o o

(1-+C°) which is common to both [Cpp,]0 and [Opp,]1 . This{result is

merely a consequence of the fact that small areas on the surface capable of

producing strong Bragg scatter, i.e. sz = cly = 0 , are as equa;ly shadowed

as the areas properly oriented for specular reflection, i.e. sz = kox/B and

Czy = koy/B . This statement can be easily verified by noting that for both

sets of the above values of ;R.x and Czy . U(ctn9-;2x cos¢-c2y sin¢) = 1

in equation (2.4) and so R(8,¢) = (l-i-Co)-1 . Since both the [Gp:.lo and

[op;,]1 terms suffer the same attenuation due to shadowing, the transition

o

is independent of shadowing effects. Since shadowing results from the slopes

region in 8 (where decreases and [dp:,ll becomes predominant)
of the large scale surface structure and since the large scale slopes are not
the important surface characteristic in determining the transition region,
this result demonstrates that the theory is self consistent.

The unit step function in (2.6) serves the very important purpose of es-
tablishing the limits on the integrals in the convolutional expression for
[op;.]l , see (32) of [1]. However, before this aspect of the problem is con-
sidered, it is worthwhile reviewing the physics behind the reason for the unit
step function in (2.6). The unit step function appears in (2.6) because there
is a certain range of surface slope values for which the probability of having
an incident ray shadowed is identically one {3]. This result may be readily
understood by referring to Figure 2.1. In (a), the slope of the surface is
negative at the point of intersection and the incident ray is not shadowed in a

small neighborhood of the point. In (b), the surface slope is equal to the

slope of the incident ray (ctnf) and the ray is therefore tangent to the surface




Incident Ray

\/ 0 - Large Scale
: Surface ﬁ

(b)

(c) :

T S

Figure 2-1. Diagrams explaining the reason for the unit step
function in the shadowing function. Only portions
of the large scale surface are shown since the small
scale structure does not impact the shadowing.
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at the point of intersection. 1In this case the point may or may not be shadowed
in a small neighborhood af the point depending upon the sutf;ce curvature., In
(c), the surface slope exceeds the slope of the incident ray and the ray is .
necessarily shadowed by some portion of the surface in a small neighborhood
of the point. Thus all points on the surface for which the slope, in the direc-
tion of the incident ray projected onto mean plane, exceeds the slope of the
incident ray will be shadowed. Stated another way, the probabilify of such
an event is one. This is the phyéical reason for the unit step function in
(2.4) and subsequent equations involving the shadowing function.

In o:der to retain the physical significance of the unit step function,
it is desirable to deal with a particular form of the equation for [op:,(6,¢)]1,

i.e. equation (40) of [1],

0 4k (1 +C )
[opp.(6,¢)] S(2k cos 0 E, + Kk »2k cos8E +k )
1
czy

. U(ctn6+£ cos¢+£ sin ¢) I‘ .(-€ s Ey)

£ £2
cexp | - =X - —L dE dE - T (2.7

2 2
200x 25y

where Ikd is defined in [1]. Equation (2.7) expresses the convolutional |
broadening of the spectrum about the Bragg wavenumbers kox and ko as a ;
direct consequence of the distribution of large scale slopes; that is, Ex

and Ey are equivalent to sz and Czy +» It should be pointed out that the

correct expression for the shadowing function has been used in (2.7). The

curve in the ExEy-plane separating the regions where the step function is

i

g b
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zero and one is a straight line, {i.e. Ex cos ¢ + Ey sin¢ = - ctne'. Except
for special values of ¢ given in Table I, the step function in (2.7) will
consequently give rise to a coupling between the Ex and Ey integrals. More
specifically, the lower (upper) limit on the £x integral in (2.7) is given by

- (ctnd® + &_sin¢) .
Ex = cosytb ' (2.8)

for cos® > 0 (<0) . From an analytical point of view (2.8) represents an
irritating consequence of shadowing. From a practical standpoint, the restric-
tions imposed by (2.8) may not be numerically relevant for a large range of
incidence angles as demonstrated by the following argument. The dominant fac-
tor in the integrand in (2.7) is the slope dependent Gaussian term which is
equivalent to the probability density function for the large scale slopes. For
most practical purposes, the effect of this term is to truncate the range of
integration in (2.7) to about a * 3-gigma excursion from Ex = E;y =0 . The

*+ 3-sigma excursions for Ex and Ejy are 13/%':,2‘ and +3 QL—)Zr , respec-
tively, and substituting these values in the unit step function argument

yields the following requirement

— w—

3 Chz‘ cosd 3 CR; sin¢$ > ~ctnb 2.9)

for the unit step function to be unity. If 0 < ¢ < 7/2 , the "worst case"

situation occurs when Ex = -3 ;_;f— and Ey =3 523 or
3 c—2' cos O + 3 c-—z sin ¢ < ctn 6 (2.10)
Lx Ly

The worst case situation occurs when the left hand side of (2.9) is most nega-
tive. Thus for numerical purposes and all values of 0 satisfying (2.10),

one can replace the infinite limits in (2.7) by %3V ;"i and *3 ci; .

11
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TABLE 1

Integration Limits for Eqn. (2.7) and
¢ a Multiple of m/2

P Ex integration Ey integration
limits limits
lower upper lower upper
0 -ctn 6 L] —00 L
n/2 - o -ctn O o«
T . - ctn 6 =~ o
In/2 -0 ® ~-00 ctn ©
12




Conditions similar to (2.10) can be obtained for other ranges of ‘¢ in a
straight forward manner.
N It is implicitly assumed that the upper limit on © resulting from (2.10)
also satisfies the optical criterion required of the large scale surface*,
namely that 4k(2) C: cos29 >> 1 . For moderate slopes there will generally be

a gap between the maximum value of O resulting from (2.10) and the upper

bound on 6 resulting from the large scale surface optical criterion. In
this case, one must necessarily revert to the more exact limits such as given

by (2.8). What is happening in this situatlon is that the t 3-sigma support

of the slope density function in (2.7) is overlapping the region of the

ExEy—plane where the unit step function is zero. 1In fact, if one could go to
the grazing incidence limit (0=7/2), it 1s readily observed from Figure 2.2

’ that only half the ExEy—plane is encompassed by the integrals in (2.7). Thus,

in addition to the attenuation of [Op;,]l near grazing incidence due to the
(1+C°)1 factor, there is another reduction factor resulting from the shadowing
of points on the large scale surface having positive slopes (see Figure 2.1).
It should be remembered that although the impact of the unit step function upon
the limits of the integrals in (2.7) is somewhat involved, it is a direct con-
sequence of the rather simple slope-shadowing limitations explained in Figure
2.1.

The analysis presented above does not alter the general composite surface
scattering theory set forth in [1]. It does, however, correct and expand the

theory in [1] as it relates to the effects of shadowing upon large angle of

incidence backscattering from a randomly rough surface. This additional analy-.'

sls was necessitated by the use of an incorrect functional form for the shadowing

function in {1].

*This criterion has also been called the stationary phase approximation {4]
and the deep phase modulation condition ([5].

13
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2.4 Discussion of Numerical Example

.

The use of an incorrect shadowing function in Sections I through IV of
(1] was primarily a sin of omission. That is, since nearly all the results
in Section I through IV of [1] were formal in nature, it was not necessary
to use the erroneous shadowing function given by (28) of [1]. However, the

numerical example comprising Section V of [1] does require attention in order

to properly account for the effects of large scale shadowing. In‘ the example
presented in [1], R was set eq\;al to unity because the large scale slopes
were relatively small. According to the analysis presented above, this step
is not justified for all angles of incidence. The correct effect of shadowing

is addressed below.

As in Section V of.[1], it is assumed that rp12>' s I‘pé.(0,0) and the

surface height spectrum is isotropic, i.e. Czi - Cll;

S(kx,ky) = S(Vki+k§ ). Substituting kcoso = kx , ksina = ky and

2
- Toe /2 and

dkxdky = kdkda in (32) of [1] and using (2.6) above for the shadowing func-

tion yields;

2T ‘
o 2k§ rmz)' (0,0) k cos(a-¢)
(opp'll - —— S(k)U(ctnG + tan 6 + 7%k cos )
T Czi cosZB(l +C°) bt kd °

. exp {- [k 2 sin’ 6 + k% + 4kkc_ s1n0 cos(a~9)] Jud cos? e} kdkdo  (2.11)

The unit step function is unity whenever kcos(a~¢) > - 2k°/sin6 . Since the
minimum value of cos(a-¢) 1is -1, this inequality will be satisfied for all
a if k is restricted to less than 2k0/sin6 ., Since the range of k from

2k°/sin9 to @ for cos(o~9) > 0 contributes little to the integral in (2.11)

(because cli is small), the k-integral limits can be approximated by

N e s < a g R RN PO AR AT W,
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[kd,2k°/sin 6] . In this range of k , the step functio/n is unity‘and the o~

integration can be accomplished with the following result;

2k°/sin6
| . w?T 2, 0,0 a6 (k-2k_ in 0)°
o %1 = R S(k) I [ —2=B"— lexp { ~ .
| T Eeesteq+c) *\k 7. Zcos? ik 27,2 cos® 8
| »gt €08 o 4 o CR.t cos 0 CR.t cos
- —ksin® U, g .. (2.12)

2 2
ko clt cos 0O

where 10(0) is a Bessel function of the second kind. The right hand side of

(2.12) may now be compared with the [Op;'ll part in (44) of [1], i.e.

2.2 e X 2

! 4k“T %, (0,0) (k-2k_sin 8)

' °_pp fs(k) I —ksinb® )\ - 0 ___ksin® K dk
2y

lokoz CQ: cos2 0 kocfbi cos2 6

2 2 2
CR.t cos 0O kd ko ;R.t cos

(2.13)

The obvious differences are the factor (1 +C°)_1 and the finite upper limit

on the integral in (2.12)., Figure 2.3 illustrates how (1 +C°)-1 varies with

0 for Cli = 0,0224 which was the value of mean square slope used to construct

Figures 3 and 4 of [1]. Of particular note in the plot of (1 +C0)n1 is the

fact it does not start to decrease until 8 exceeds 85°; at 87.5°

(1+c )7l = 2.5 dB. The value of 6 = 87.5° is the point at which 4k§z;_‘;: c0s%62 10
and, consequently, represents the approximate limit of the large scale theory.

! That is, for O > B87.5° the analysis of the scattering from the large scale

*’ structure on the surface can no longer be accomplished using optical techniques.
The effect of the finite upper limit on the integral in (2.12) is much less

dramatic. 1In fact if the lokozl;icosze 2 10 criterion is ignored and the limit
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of 6 = 90° is taken in (2.12), it can be shown® that the finite upper limit

gives rise to a 3 dB reduction from the value of (2.13) at 6 = 90°. This same

conclusion can also be obtained from (2.7) and it is a direct consequence of
the fact that all positive slopes are excluded from consideration at 8 = 90°
(see Figure 2.1). Within the range of validity of the optical criterion, the
finite upper limit on the integral in (2.12) gives rise to much less attenua-

tion than the (1-0-00)-l factor.

.~

In view of the above analysis, it is concluded that the numerical results
presented in Section V of [1] are correct as they were presented. Determina-

tion of the spectral division wavenumber k, is in no way altered by the inclu-

d
sion of the correct shadowing function. The curves shown in Figures 3 through
6 of [1] are correct because they do not encompass the range of 0 where shadow-

' ing is important (6285°). As noted above, the onset of shadowing effects

t occurs approximately where the optical criterion (loko2 Cf cos2 8 2 10) is vio-

for larger slopes shadowing must be considered since it will cause a signifi-

cant reduction in Opg, near grazing incidence.

t lated, i.e. 6 = 87.5° , for the numerical example presented in [1]. However, ?
E 2,5 Summary

i In the analysis presented in [1], it was correctly demonstrated how one

includes the effects of large scale surface feature shadowing on the backscat-

tering cross section of a composite surface for large angles of incidence.

Unfortunately, an incorrect form for the shadowing function was used in [1]

|
; which led to the erroneous evaluation of the impact of shadowing upon large

angle of incidence scattering. In this section, the correct form of the shadowing

*To show this one can apply Laplace's method to asymptotically evaluate (2.12)
as cos 6+0. However, it must be remembered that the maximum of the integrand
occurs at the upper limit of the integrand as cos 8+ 0 and this impacts the
evaluation of the integral [6].

18




function has been presented and included in the formulas obtained in [1].

Particular emphasis has been placed upon the physical significance of shadow-
ing as it effects large angle of incidence scattering. It has been shown that
shadowing leads to multiplication of both [op;.lo and [opg.]1 by the fac-

tor (1-0-(!0)-'1 which causes [Op:,] and, thus, op:' to go to zero near

1
grazing incidence for a perfectly conducting, randomly rough, composite sur-
face. Furthermore, there is another effect which leads to an add}tional 3 dB
attenuation at grazing incidence~ (91-90°)*. This effect resultsifrom those
slopes which, with probability one, will cause the point on the surface having
these slopes to be shadowed. At grazing incidence, all positive slopes are in
this class.

A reevaluation of ghe numerical results presented in [l1] revealed that
use of the correct shadowing function did not alter any of the results rela-
tive to the choice of the spectral dividing wavenumber kd' Furthermore, none
of the curves presented in [1] were effected because they only encompass the
range of 6 from 0 to 70° and the effects of shadowing were present for 02 85°.

Also, techniques were presented relative to overcuming some of the analytical

difficulties resulting from the use of the correct shadowing function.

%It is reemphasized that exact grazing incidence cannot be addressed by this
theory because the optical criterion assumed of the large scale surface fea-

tures is violated. The -3 dB figure 1s significant only in its magnitude rela-

tive to the effect of the (],+C°)"1 factor.

19

PSP oSN S A2 b e S A L




References

1. Brown, G. S., "Backscattering from a Gaussian-distributed perfectly con-

ducting rough surface," IEEE Trans. Antennas & Propg., AP-ZG; pp. 472-82
nay, 1978. ’ _ i

2. Sancer, M. I., "Shadow-Corrected electromagnetic scattering from a randomly

Ty ——

rough surface," IEEE Trans. Antennas & Propg., AP-17, pp. 577-585, September,

L

1969.

3. Smith, G. B., "Geometrical shadowing of a random rough surface," IEEE

Trans. Antennas & Propg., AP-15, pp. 668~71, September, 1967.

4. Kodis, R. D., A note on the theory of scattering from an irregular surface,"

t
] IEEE Trans. Antennas & Propg., AP-14, pp. 77-82, January, 1966.
|

, 5. Hagfors, T., "Relat{onship of geometric optics and autocorrelation approach
to the analysis of lunar and planetary radar," J. Geophys. Res., 11,
4 No. 4, pp. 379-83, 1966.

6. Erdelyi, A., Asymptotic Expansions, Dover Publications, New York, Sec-

tion 24, 1956.

L N Ve

20

o > RS = s g ————

SR > e g
. o L -, T



3.0 SHADOWING BY NON-GAUSSIAN RANDOM SURFACES

3.1 Background

Shadowing of random surfaces was originally introduced [1] as an ad hoc
correction to the results provided by physical or geometrical optics approxi-
mate theories of rough surface scattering. Sancer [2] subsequently demonstra—
ted how shadowing could be rigorously accounted for in the optical limit for
random surfaces. Furthermore, he showed that previously derived expressions
for the effects of shadowing based upon purely geometrical considerations [3,
4] were directly applicable. Using Sancer's results, Brown [5,6] showed how
shadowing could be rigorously included in a formulation for scattering from
random surfaces characterized by many scales of roughness, i.e. composite
rough surfaces.

While shadowing theory is reasonably mature, it has only been applied to
jointly Gaussian random surfaces. The Gaussian results are probably adequate
for the ocean but they are questionable for terrain and completely inadequate
for sea ice fields, For sea ice, water first fills all surface depressions
below mean sea level and then freezes., This elimiant;s all surface height
excursions below mean sea level and the probability density function of the
surface roughness is clearly non-Gaussian. For these reasons, it 1is important
to extend shadowing theory to the point where it can easily accommodate non~

Gaussian surface statistics; such is the purpose of this section,

b}

3,2 Analysis

The special case of backscattering is chosen to illustrate the approach;
this minimiges some of the conceptual details associated with the more general
bistatic case. It turns out that the extension of the results to the bistatic
geometry caa be accomplished almost by inspe;tion. The analysis presented by

Smith [4] 18 general to a point in the development; however, there are a number
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of integrations which must be accomplished in order to arrive at the final
expression for the shadowing function. In the case of a jointly Gaussian
surface these integrals can be performed and a closed~form result is obtained
for the shadowing function. For non-Gaussian surfaces, the required integra-
tions appear to be, at best, formidable. The purpose of this section is to
show that if the height and slopes of the surface are independent random vari-
ables then the final expression for the shadowing function 1s drastically sim-
plified.

For the reader's convenience Smith's notation will be employed in this
section and his Figure 1 is essentially repeated here as our Figure 3.1. There
are three critical relationships from Smith's paper [4] which are required.

If S(F,0) 1is the probability that no part of the surface will intersect the
incident ray (at an angle 6 with respect to the normal to the mean flat sur-

face) on its way to point F on the surface then S(F,8) is given by

-]

N

S(F,8) = h(u-q, ) exp { - g(t)dt 3.1)

where h(e) 1is the unit step function, u = ctn6 , q, is the slope of the
surface in the y-direction at F , and g(T)AT 1is the conditional probability
that the surface will intersect the incident ray in the interval (1,1 +AT)

given that 1t does not intersect the ray in '(O,T) . The function g(T)AT is

determined by the behavior of P3(E,q|F,T) which is8 the joint probability of

i i

the height £ and y-slope at the point (x=0,y=T) conditioned upon the

height (Eo). and y-slope (qo) at point F ; in particular, . ﬂ
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5 4
! 4
§ Figure 3-1. Shadowing geometry. The incident ray lies in

§ the x = 0 plane and the slopes of the surface at

the point F are 3E/3x = p, and 3E/3y = q_ .
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o0

f(q ‘U)P3(E:qu:T) dq
E=E, +ur

o E°+ur

f dq | P,(E,q[F,T)dE

At (3.2)

g(t)AT =

The average of S(F,8) over all surface heights with P, = 0 and q, " ~1/u
is the desired shadowing function R(8) , i.e. the probability that a back-
scattering specular point on the surface will not be shadowed.

Smith proceeded to evaluate (3.2) in the Gaussian case by assuming that
the heights and slopes at F were uncorrelated with those at y=1 . The
same assumption will be made here. Furthermore, it will be assumed that the

height and slopes are independent random variables; thus,

P,(E.q[F, 1) = P (EDP,(q) (3.3)

where Pl(E) is the height probability density function and

- -3

where Pzz(p,q) is the joint probability density function of the x and y

slopes. Substituting (3.3) into (3.2) yields the following

r Pl(go +ut)
Eo +ut

P, (E)4E

g(x) = (3.5)

-0

where
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[ = f(q -WP,(q)dq (3.6)
M

The denominator of (3.5) is recognized as the distribution function for §
evaluated at Eo +ur , i.e. F1(£o+u'r) . Also, Pl(£°+u‘t) in (3.5) is
equal to the derivative of the distribution function evaluated at & = £o+m' .
Consequently, (3.5) becomes g(T) = [P/F1(€0+uT)]dF1(E°+uT)/d(5°+uT)
Substituting this result in (3.1), making the change of variable n'EoﬂJ‘r

and noting that dFl/Fl = d(fn Fl) yields
oo

S(6,F) = h(k~q ) exp {-I‘/u f d[LnFl(n)]} (3.7)

n-Eo

where fn denotes the natural logarithm. Since Fl(w) = 1, (3.7) reduces to

the following;
5(0,F) = hu-q,) F, ()" (3.8)

Remembering that Pl(ﬁo) = dl"l(Eo)/cl«‘,'o , the average of (3.8) over all values

of 50 simplifies to

Iy
W 50pa,0 mhe-a) | {FEp) T an ) (3.9)
Eon—w
or
h(u-q.)
S(po,qo,e) = T/u + 1 (3.10)

since Fl(—w) =0 and T/u+1>0 . Wth q, = -1/u , the shadowing func~

tion appropriate for backscatter reduces to the following simple expression;




s

-1
R(G) = {1 + f(q/u-l)Pz(q)dq} (3.11)
H

where, in summary, u = ctn® , © 41is the incidence angle, and Pz(q) is

the probability density function of the slopes of the surface in the plane of
incidence defined by the incident ray and the normal to the mean surface. It
is interesting to note from (3.11) that for normal incidence (6=0) R(0) =1
w%sreas at grazing incidence (0 =7/2) R(7/2) = 0 since U =0 and
j.qu(q)dq > 0 . Thus, these basic properties of the shadowing function are
:ndependent of the detailed properties of the slope density function. One can
easily verify that (3.11) is identical to the results obtained by Smith for
the special case of a jointly Gaussian surface.

The form of (3.10) compared to Smith's results, i.e. (23) of [4], suggests
that the above result can be directly translated to the bistatic case and, in-
deed, this is the case. For the bistatic case, a generalization of Sancer's
[2] results will be given. It should be noted that the inequalities involv-
ing the angles of incidence (90) and scattering (0) , just prior to Sancer's
equations (49), (50), (54) and (55) should be reversed. With U=ctn 6 and
U, =ctn 00 » Sancer's results are easily generalized by replacing his Co by

I‘(uo)/uo and C, by rQu)/u .

E)

3.3 Example

To illustrate the above results, the backscattering shadowing function
R(0) will be determined for the exponential joint slope density function in-

troduced by'Barrick [71, i.e.

Pyy(psa) = ;—32- exp [- Vo ? + qz)/wz]

27
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where w2 is the mean square slope of the surface roughness. Pzz(p,q) in

2> = <q2>

(3.12) represents a surface whose roughness is isotropic, w2/2 = <p ’

with statistically dependent slopes. That is, the joint density function can-
not be expressed as a product of the marginal or individual densities. The
calculation of the marginal density Pz(q) , using (3.4), is reasonably straight-

forward and the result is as follows;

P,(q) = ;3—2- lal X, /6 |a]/w) ~(3.13)

where K1(°) is one of the modified Bessel functions of order one [8]. It

is interesting to compare this density with a Gaussian, i.e.

P,(q) = exp(- q2/2w2)

w/2n

and this is done in Figure 3.2 where the normalized densities Pz(q)w are
plotted as a funciton of the normalized slope q/w . It should be noted from
the plots in Figure 3.2 that the "exponential" density shows a much greater
probability of occurrence of smagll slopes than the Gaussian. This result is
in agreement with one intuitive approach for generating a surface character-
ized by (3.12), e.g. one strongly filters all surface height excursions below
a certain level to eliminate the possibility of large negative height excur-
sions. This process increases the probability of small slopes at the expense
of the large slopes.

Substituting (3.13) in (3.11) and using tabulated integrals of Bessel
functions given in [9), the following closed-form result is obtained for the

backscattering shadow function R(6) ;

-1
R(O) = {1—’;- Kz(x) + -;‘- + g- [Kl(x)l.o(x) + Ll(x)Ko(x)]} (3.14)




s e

where x= (V6/w)ctn 6 and the Ln(') » =0 or 1 , symbol denotes the modified
Struve functions [8). Using as?mptotic forms for the special functions in
(3.14), it may be readily verified that R(0) = 1(x*°) and R(W/2) = 0(x=0) .
The modified Struve functions may be computed from tables given in [8] for

X 2 5 and by a power series for smaller arguments.

Figure 3.3 compares (3.14) and the shadowing function for a Gaussian func-
tion obtained by Smith [4] for a range of rms slopes. The shadoging function
for the exponential joint slope &ensity is larger because the marginal slope
density given by (3.13) exhibits less likelihood for large slopes than the cor-
responding Gaussian density. That 1s, the larger slopes are the source of

more significant shadowing.

3.4 Summary
The shadowing theory developed by Smith [4], while sufficiently general

to deal with any joint slope density function, involves what appears to be a

number of rather complicated integrals. Under the assumption that the sur-

face height is statistically independent of the surface slopes, it is shown
that Smith's theory can be reduced to a single integration involving the mar-
ginal density function for the slopes in the plane of incidence. Using this

result but without regard to the specific form of the marginal density func-

tion, it can be shown that the backscattering shadowing function is unity at
normal incidence and zero at grazing incidence. Because the final result in-
volves an integration or smoothing process, it is amenable to the use of
histogram data for the marginal slope density.

This theory is applied to an exponential joint slope density represent-
ing an isotropic surface for which the slopes are not statistically indepen-
den:. The backscattering shadowing function for the exponential and Gaussian

joing slope densities are compared and it is found that the Gaussian surface
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produces stronger shadowing. This result is found to be a consequence of the

greater likelihood of large slopes with the Gaussian density.
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4.0 BISTATIC SCATTERING FROM LOSSY RANDOM SURFACES

4.1 Background

Prior to the mid-1960's, electromagnetic scattering from randomly rough
surfaces was modeled using either perturbation theory or physical optics [1].
First order perturbation theory appeared to do a reasonable job of analytically
describing the scattering process when the surface roughness was'small in terms
of the electromagnetic wavelength and multiple scattering was ne%}igible.
Physical optics produced meaningful results in and about the specuiar scatter-
ing direction when the surface exhibited very large but smoothly undulating

height variations. Unfortunately, there were numerous attempts to apply these

theories to situations where the implicit assumptions in the models were vio-

lated. These attempts usually assumed some surface parameter such that the

scattering measurements and the "model" were brought into agreement. However,

it was very quickly recognized that these attempts were highly suspect because

of their failure to meet certain fundamental principles.

As more and more rough surface microwave scattering measurements were

acquired, it became obvious that neither first order perturbation theory nor

physical optics were individually adequate for all angles of incidence and

scattering. Conversely, it appeared that physical optics seemed to do a good

modeling job near the specular scattering direction while first order pertur-

bation theory was reasonably accurate for all other scattering angles. Almost

simultaneously, researchers in the U.S. [2] and the U.S.S.R.[3,4] began to

advocate the combining of these two diverse theories in what was later to be

called the composite surface scattering model. In this model, the surface

was considered to be made up of both large and small scale surface features

(height and spatial wavelength) relative to the electromagnetic wavelength,

A . The large scale surface features were considered to be responsible for

(o]
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the physical optics-like scattering near the specular direction. The small

scale surface structure gave rise to a perturbation field (to the optical
field) which was the dominant scattering mechanism away from the specular
scattering direction. The interaction between the optical and first order per-

turbation fields was assumed to be totally dependent upon the tilting of the

small surface structure by the larger gently undulating featureg [51. ’
More recently, rigorous first order boundary perturbation theory has been ;
applied to the problem of backséattering from a perfectly conduc;ing, Gaussian
distributed rough surface [6]. The results of this analysis indicated that
|

much of the original work on this problem could be rigorously justified. ;

Furthermore, additional insight was gained in regard to such aspects of the

problem as shadowing (gee Section 3 of this report), spectral dichotomy, and
the tilting interpretation. A logical extension of this latter theory encom—
passes bistatic scattering from a lossy dielectric surface. The purpose of
this section is to present the details assoclated with such an extension.
Before the details of scattering from a composite dielectric surface are
presented, it is illuminating to consider two much simpler cases. The first
is backscattering from a dielectric surface having only a small scale rough-
ness while the second case addresses bistatic scattering. The advantages of
this approach are that it leads to familiarity with the perturbation technique

and it sets forth the principles that will be used for the composite surface.

4.2 Backscattering From A Dielectric Surface With Small Scale Roughness

— e X

The geometry for this problem is shown in Figure 4-1. The mean or aver-
age surface is the z =0 plane; the random roughness cs superposed upon
this plane is positive for csi>0 and negative for CS*<0 . Below the rough
surface (z‘<§s), the relative dielectric constant of the medium is Er and
the relative magnetic permeability is takenktq be the same as for free-space,
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i.e. ur'-l . Above the rough surface (z >cs) » the medium i{s free-space,

l.e. er=1 and ul_-l. ~
Provided that the roughness is small with respect to the electromagnetic
272 2
wavelength Ao s €e8e 4k° cs <<'1 where ko = Zﬂlko and Qfeis the mean

->
‘ square height of the roughness, the scattered field E® can be expressed as

follows;

-+ >
E® » 6%E + &' .1)

where Gdi is the field scattered by a surface having no roughness (the zeroth

order perturbation) and S’E is the scattered field which depends on the rough-
ness to first order only (the first order perturbation). The primary assump-
tion in (4.1) 1s that higher‘ order terms such as O(Csz) s 0(1;83) » etc., are

. negligible. The zeroth.order perturbation field GOE is trivially determined
since it is just the field reflected by an infinite, flat dielectric interface.
Both Mitzner [7] and Burrows [8] have obtained particularly useful expressions

N .
for 6'E . The Mitzner result is more straightforward but it 1s restricted to

small roughness perturbations superposed on a flat plane.o Burrows' solution :

for GIE ig somewhat more complicated but it is more general in that the unper-

turbed surface need not be planar or even deterministic. For small scale rough-
ness on a plane, the Burrows formulation requires a bit more effort in computing
6l§ than Mitzner's result. For a composite surface, only the Burrows result
is sufficiently general to address this problem.

At first glance, the Burrows expression for GIE appears to be somewhat

cumbersome and confusing. However, if it is realized that the result is obtained

®Mitzner's result can actually be applied to any unperturbed surface for which
the wave equation is separable., For the problem considered here, the surface
is restricted to a plane.
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from an application of reciprocity then the notation becomes more meaningful.

Basically, one deals with two incident electric fields of the form

> ~ ’ . _ - .+

Ei = Eie Li Eo exp ( jki r) (4.2a)
and

FE IR A . _sT, T .

Ei Ei e Ei Eoexp( jki r) (4.2b)

where the primed field may have a different polarization and direction of inci-
dence than the unprimed field. Burrows' expression for the first order per-
turbation (electric) field scattered in the direction -ﬁ; and polarized in

the &' direction is as follows {81;

Rfexp(-jkoR)

4TRE €
[o B+ ]

gl f [ag-3* + a8t - B - BB as, .3

S
o

where it is assumed that 51E.3' is measured in the far-field of the rough
surface, The distance R 1s measured from the origin of the reference co-
ordinate system on the mean surface to the point of observation or measurement
of &'E«d' and €, 1s the permittivity of free-space. The fields B ’ iy .
D' and B are the fields on the unperturbed surface (So) due to the primed
incident field while AE , AR , AD and AB are the discontinuities in the
fields on the unperturbed surface (So) due to the unprimed incident field.
Thus, to determine the Gp'-polarized component of the scattered first order

A

A
perturbation field in the general direction kS one merely sets é'-ep and

ﬁl- -ﬁs in the expression for the primed incident field E; , computes the

resulting fields E' . i , D’ . B' on the unperturbed surface S0 , and sub-

stitutes these results in (4,.3).

A

For backscattering ﬁs = -k1 so according to the above receipe, ﬁ; = ﬁi
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which in the coordinates of the geometry shown in Figure 4-1 is as follows;

>

A -fzi-ko(—siqecoscpﬁ-sinesin¢9-c0862) (4.4)

Contrary to previous analyses [l1], the direction of incidence spgcified by

the angle ¢ should not, at this point in the development, be a;bitrarily set
to some convenient value such as 0 or W/2 . The reason for this is that the
surface may have anisotropic roughness and the orientation of thé x and y
axes of the reference coordinate system should be fixed relative }b this sur-
face characteristic and not the direction of incidence.

Since the fields inside the surface integral in (4,3) are the fields
induced on the infinite planar dielectric surface So » it 1s convenient to
further categorize the problem according to the polarization of the incident
fields. For both Ei and Ei' horizontally polarized, & and &' are

Y

orthogoral to the plane formed by the unit vectors ki and A= 2 where fi

Pal

is the normal to the mean or unperturbed surface. In this case both & and
-> -+
e' are totally tangential to the mean plane. For both E1 and E{ verti-

cally polarized, € and &' are parallel to the plane formed by ﬁi and

N
i =2,

4.2.1 Horizontal Polarization

~
When &€ and e' are tangential to the mean or unperturbed surface, the

fields E R E' , D and 3' (when evaluated on So) are entirely tangential to
S° . Since the tangential component of the electric field is continuous across
an interface, AE=-0 . Furthermore, since there is no change in ur across
the boundary and the lower medium is assumed not to be perfectly conducting,

Ai and Aﬁ are both zero on the interface. Consequently, (4,3) reduces to

the following;
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2 .
k “exp( -3k R)
1 A o 0 > >
§'Ece' = - R B, f(AD l?:')l;sdso 4.5)

S
o

The total E'-field on the surface So due to Ei' is given by -

(1+R,) E'i (So) =E Q1 +Rh) exp(—jEi-;L) e' 4.6)

where Rh is the Fresnel (field) reflection coefficient for horizontal polari-

~ ~ -+
zation and T, = xx + yy or just r evaluated on So' The discontinuity in

_ L
>
} D is given by

| AD {+ ot E, - 7

i = Eo Ei(z ) - Er Ei(z-O )} (4a7)
i and

| A + > 8a)
f E(z=0") = (1 +R‘n) Ei (So) (4.8a
| E(z=0" E 8

1 E(z=07) = Th Ei (So) (4.8b)

where T is the Fresnel (field) transmission coefficient for horizontal ’

h
polarization. Combining (4.8a) and (4.8b) in (4.7)ylelds

2 ity -

> ) ->
AD = eo[l +R, - €_ 'rh] E,(S,)
} or

> +> > A :
j AD = E:o[1+Rh-er Th]Eo exp(—jki'rJ_)e %.9) :
1 _
Multiplying (4.7) by (4.9) and realizing that Th =1 + Rh yields i
] ADeE = - EZ(1+R) 2 -1 2K, r,) (B+8") (4 .10)

2 —OEO( Rh (r- Yexp (-] 4°ry) (ee .

’ Substituting this result in (4.5) produces the desired result for the first

! order perturbation field polarized in the e' direction
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2

- k "E
A 2
S'Eee" = ano exp( -] koR) a +R.n) (er —l)ff exp( -j ZEi.;L) ;s dx dy
“4.11)
where £+&' = 1,
cose-ve - sin? 0
- T
Rh 2
cos® +Jst - 8in” 0
and so .
2
2 4(€r =1) cos™ 0
a+r )% (e -1) = (4.12)

2
[cos 6 +Jer - sinze]

There are several points to note about (4.11). The derivation of (4.11)
was considerably simpler than the Rayleigh-Rice approach [1]; this is because
all of the difficult work was done in obtaining (4.3). Equation (4.7) is an

expression for the scattered first order perturbation field, a more meaning-

ful quantity than the average scattered power when dealing with phase sensi-

tive systems. The average of (4.11) 1s zero because <§8>-0; however, the

average of <|61E°3' |2> or the incoherent power is not zero. At the beginning

of this section &' was specified to be in the same direction as & , thus

S1E-8" represents GlEhh vwhere the double~h subscript denotes horizontal

polarization on transmission and reception. It is now possible to examine the

consequences of cross-polarized sampling of the scattered field. In this case ]
e' is orthogonal to & ; thus, e 1is horizontally polarized and &' 1is '

vertically polarized, i.e.

g = 8h= sin ¢8R + cos ¢ ¢

e' = av = -~ cosBcos X - cosOsinp ¥y + sin 02




Returning to (4.3) for this case, it is noted that AE is still zero because

Ei is tangential to So N AB and AH  are still zero because there is no

change in W, across So and the conductivity is assumed finite, and the prob-

lem reduces to evaluating ADE' on §, - However, AD has the direction

Gh while E' d1s polarized in the év direction, consequently, &<&'= h"év'=0

and there is no depolarization by the surface. This is just a confirmation of

>

the fact that first order perturbation theory does not lead to a depolarized

scattered field when the roughness is small scale.

4.2.2 Vertical Polarization

The case of vertical polarization is a bit more algebraically involved
because A.E". is no longer zero across So . Both magnetic field discontinu-
ities, Aﬁ and Aﬁ , are still zero for the same reason as given above.

Thus, (4.3) reduces to

2

k "exp(-3k_R)

§1%eat = O P 1% [AE-B'-A’B-E'lcsdso (4.13)
lmREoeo

s
o

For vertical polarization, it is customary to use the incident magnetic field

-ﬁi as the source. Thus, the incident, reflected and transmitted magunetic

fields on So are given by

T

N * >
4 Ho ehexp(-jk:l r_L)

A &> >
= Ho Rv ehexp( -j kr°r“_)

4 r‘ﬂﬂ

- -y - e .->
¢ Ho Tveh exp( jkt r)

where Rv and 'I'v are the Fresnel (field) reflection and transmission co-
efficlents for vertical polarization. On So the corresponding electric fields

are as follows;
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R,

B H ~ ’
E o= - Eg kg H : E, = - °© ¥ xH
q o .1 eoer t t

~

where q = i, r and ki s kr and kt specify the direction of propagation of the

+
incident, reflected, and transmitted fields. Note that since r; is on So .

.

which is merely a restatement of.the fact that the angle of incidénce equals
the angle of reflection and Snell's law [9]. For backscattering and like
polarization sampling of the scattered field, the primed fields are the same
as those above.

Although somewhat gumbetsome at this stage of the development, it is
i desirable to split the fields into components which are tangential to and
normal to So . The reason for introducing this transformation is that it

will be very useful in the composite surface development and it is therefore

f beneficial to obtain some facility with the technique on this easier problem.

h

~
This particular choice of T 1is convenient because T -Ev selects the com-

The normal to So is fi = 2 while the tangent will be taken as T =fi X & .

b i . o 8.l MNP .« .

~ =y A
ponent of ey that is tangent to the surface. Since AE*T = 0 and As-n =0

on So , (4.13) simplifies to

s

2
k exp(-Jjk; R)
4hTRE ¢
o ~o

! §1Eeg =
v

o

f [aE-d) @' ) - @B-D)E'-D] ¢, a5
S (4.14)

o
where &' has been replaced by its equivalent év since like polarization
sampling of the scattered field has been specified. The boundary conditions
AE+T = 0 and AD+A = 0 should not be discarded because they will provide some
useful relationships. From AEeT = 0 there results
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~ A T ~
A ~ . A = V A . -~ R
[(ki x& ) + R (k_ Xeh)] 1 = (k, xe )T %.15)

r
while AD+fi = 0 yields
~ A A
A A " eh a A .
[, x&) + R (_x8)) 8=V T (R xE)-8 “.16)
where AE = Ei +-ﬁr —Et and Aﬁ-ﬁi +Br-3t have been used along with (4.15)

-
and D=€¢E .
It is now necessary to determine the field quantities inside the integra-

tion in (4.14). The quantity MR- can be reduced to the following form

through the use of (4.15);

H T

> A [ v > > o ~ A
AEen = ~agf— H — (e_-1)exp(-jk,*r )(k_xe )en (4.17)
% °V T toerem

while (4.16) simplifies D'ed  to

Beb = - A€ H T /e exp(-3 Ki-ﬁ)(ﬁtxéh)-ﬁ (4.18)
so
@) B ed) = u B2, (e, -1 exp (-1 2K ) [, xg)ed]"  .19)

Through similar manipulations,

~ T A ~ A

£+t = - fie H /—_—"_ (L-g ) exp (-3 & %)) (k xE)eT (4.20)

er
and
R u T
el w-a/—2 H — exp(-jk,°r, )(k x & )T (4.21)

€ () 117"t "h *
o ° /5,
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T2

- .A - 2 .l_ > .-) ~ ~ A 2
@B-7) @' 1) = u B’ e (e exe (-3kF) [k, xepe7] G.22)

Combining (4.19) and (4.22) and completing the unit vector opera'tions yields

> A P A 2 2 (6 ~1)
(BE-n) @' *R) - (AD*T) (E' 7) = M T [e +(e_-1)sin e]exp( jZk T R
r .. %.23)
where
2€r cos @
T =
v Y/ 2
€ _cos® + € - sin“0
r r
Y
Substituting this result in (4.14) and recognizing that EO ¥z Ho
o

"

and e, --ﬁi xéh , the final result is obtained

k, exp(-:l k R) (e _-1)
8 f-év- ZTR J::-H T2 r [E: + (e —l)s:l.n él fexp(-32k1°r )t;sdxdy

(4.24)

Essentially the same remarks apply to the vertically polarized scattered
field as for the horizontal case. In addition, it should be noted that if
(4.11) and (4.24) are converted to 0° or the scattering cross section per

unit area according to

6°(0,¢) = 1lim lim I 5
R+ Ao Eo

4 R? <161'EJ1>}

where A 1is the illuminated area, the result is identical to the result

obtained by Peake using the Rayleigh-Rice approach [1].




4.3 Bistatic Scattering From A Dielectric Surface With Small Rouﬂmess

For bistatic scattering the unit vectors specifying the directions of I

incidence of the unprimed and primed fields are given by (see Figure 4-1)

o A A A
ki =-sin91cos ¢i X -sine:ls:l.nti:i y - cosG:l z

(4.25)

Ss v Etmbas s kst e ot ot

"' - ~ _ ~ _ ~
k1 sin 68 cos ¢s X -sin Gs sin ¢s y - cos 68 z

A -»> A .
and .l:i = koki ’ ki = kok:'l . The unit vectors specifying the directions of

horizontal and vertical polarizations for the unprimed and unprimed fields

are as follows;

~
e

h = -sine1 ® + cosd, 3

A

' [
e] sind) x + COS¢ y

N>

~ A A
e, -<:os€):L cosq)1 X - cosei s:l.nqzi y + sinei

N>

€' =-cosb_ cosp X - cos6 sing § + sind
v 8 8 8 8 s
The normal to the unperturbed surface is f = 2 while the tangents to the
surface for vertical polarizations are given by

A A ~ A'=A A
T n><eh T n><e,n (4.27)

Equations (4.25)-(4.27) describe the basic quantities that will be required in

this section. f %

4.3.1 Horizontal Polarization

Since AB and Aﬁ are zero, because there 1s no change in W, across

So and the conductivity is finite, (4.3) becomes

2
k xp (- R
sitegr - o Ik D

h 4w REO Eo

f[A'Ff-B' - ADE'] g ds G.28)

S ;
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Furthermore, AE is also zero across So because E is tangential to So .

Thus, (4.28) becomes

2
k "exp(-3jk_R)
i . [ ° o +.-’
s'E-e, GTRE_€_ f[AD E'] L dS . 4.29)

S

On the surface So , the incident, reflected, and transmitted electric fields

.-

(unprimed and primed) are as follows;

= -3k oF s T o S 'Y ae

ﬁi E exp ( jk1 1"'..)eh E/ Eoexp( jki 1:‘L)e}I

z a2 T ' Tt T A

Er EoRh exp ( jkr 1:_‘_)§h Er EORh exp( jkr r‘L)eh

e - - -> .+ A e ' . ' - - ' .-b At

Et Eo Th exp( -] kt 1:J._)eh Et Eo Th exp( -] kt r‘L)eh
where also on the surface So > (4.30)

T T T T2 ST ot

k1 r_L kr r_L kt rJ_ ki r, kr r, kt r-L (4.31)

and the same notation as introduced earlier has been continued. The fields

A and E' on §, are as follows;

> : > > .
AD = €, E0(1+Rh-(-:r Th) exp (-] ki.ﬂ_) &,

=TI ' _ P T A
E E°(1+Rh)exp ( ;]ki rL) e
Using the fact that 1 + Rh =T, » the product AD*E' becomes
TPt - 2 ' - 4 At [_ N ke
AD*E €, Eo Qa +Rh)(1 +Rh)(1 er)(eh eh)exp j(k1+ki) t—L]

and substituting this result in (4.29) yilelds

k% exp(-k R)

siE3,) = T By (LR (LHR)) (6 ~1) (& °8)) f f exp[-j(ifi'i)i g, dxdy
(4.32)




This result can be easily translated into the angles (O

) anq (68.¢s)

14
by the use of (4.25) and

éh-éh' = cos(¢i—¢s)

along with

2cos8 0 2cos0
i [:]

1L+R = — 1L+R' =
cos ei+ /sr- sinz ei cos 98 + /er - si.n2 es

.~

For ease of comparison, it should be noted that most results similar to (4.32)
express the direction of scattering as ﬁs which, in the above notation, is

-k, Equation (4.32) yields GlEh For cross polarized sampling of the

i h' *
scattered field, the problem becomes somewhat more involved and it will be
discussed in Section 4.3.3. It should be noted that when d)s = ¢i (backscat~-

tering), (4.32) reduces to the result obtained in Section 4.2.1.

4.3.2 Vertical Polarization

AT A >
Since n*E and T°*D are discontinuous across the unperturbed surface,

(4.3) reduces to

2
. ko exp(-jkoR)
v 4TRE €
o o

§'E-8

f[(A'E’-ﬁ)(B'-ﬁ) - WD ETHEI] ¢ a5, (¢.33)
5o
where the scalar product T+T' must be included because the unit vectors T

and T' are not necessarily parallel, e.g. see (4.27). The incident, reflec-

ted, and transmitted unprimed and primed magnetic field quantities are given by

> 3T 2 \2 T o_
l-li Ho exp( jk1 1'1_)eh l-li
-» - - > .+ A -‘P' =
Hr Ho Rv exp(-j kr z'J_)eh Hr
* _1t 2 aa oo
He = B T exp(-1k r )8 H,
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while the corresponding electric fields are

3 2 - _0_ N x -'l & - __Q_ Al +l
E e K Ey g kg X H
n ‘/u
-+ o -+ > o ~ e
- - — X LI —_— ' % !
E 2k xH E! =2 kY XH!' (4.35)
[+] o
H H
> o ~ > o A <+
E--J k xH E' = - K oxHY
t Eoer t t t € ¢ t t

-+ > > +
and D=¢E , D'=¢E' . The same notation introduced in Section 4.3.2 is

continued here. From the boundary condition that the tangential component of
the electric field be continuous across So , 1.e. AE*? = 0 and SE'T' =0
the following relationships result;
A A T A
(ky X8 )oT + R (kX8 )oT = —= (k_x8& )T
i "h Rh r h Jeo ¢ h

er
(4.36)
Tr
& o2 Y ht x2 1101 o Y T xA1y.T
ey x81)eT" + RS (k! x8 "7 - k' <&t
r

2>
Similarly from the continuity of the normal component of the D-field across

So s il.e, AD*A=0 and AD'+R = 0 , there results

(e, x8 ) + R (k_x&)f = /q Tv(kt x& )f

4.37)
R R N NG

Using (4.37) to simplify the expressions for AEs6 and D' yields
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T

Vv g ."* ~ A .A.
Ho - (Cr exp(-j ki r‘L)(ktXeh)n

“r

Bren = - ' P B AN SUP N RPN
D' +A /uoeo H /eT_Tv exp(-Jki-r))(k' x&")A (4.39)

In a similar fashion, (4.36) is used to simplify the expressions for A-IS“I

and E'eT' with the following result; ' !

| T

: ABeT = A€, B —= exp(-jk, T, )(k x&)T (4.40)
: o 0o o /e i t h

i r

’ and

I m '

| +'.A' - - _o_ v _ >, .-) 2y P .l\'

i E'et e Ho _/; exp( jki 1:"..)(1&t ><eh) T (4.41)
3 r

’ Substituting (4.38) -,(4.41) in (4.33), noting that TeT' = cos(¢i—¢s) ,

and simplifying the unit vector operations yields the foliowing result for

s'Eear

v

|

i U exp(-jk R) (e_-1)

i 1+.~=‘/_—2 - R . i —sin2 ~sin?

§'Ee8 e Ho IR TvTv 5;2 {ersinei smes + @r sin Gi)(t:r sin GS)
r

(4.42)

. cos(¢i-¢s)}ffexp [-—j(i:i +i€i')._r:.)]Cs dxdy

where Eo = Hov’uo7eo and

2¢ cosH,
T i

T =1+R =

v v Vamry
er c:osei + er-sin 61




and T' = Tv(ei+es) . Equation (4.42) is GlEvv" and it is easily shown

to reduce to the result for bagkscattering in Section 4.2.2. when ¢i==¢s
and ei'-es « Once again it should be emphasized that the most difficult

part of obtaining (4.42) is evaluating the terms (ﬁt><€h)~? and (ﬁ; xah')-?'
in (4.40) and (4.41). As noted previously this is a consequence of the fact
that the difficult analysis was finished once (4.3) was derived and the actual
evaluation of (4.3) is very straightforward. Finally, comparing'the o’

values resulting from (4.32) and (4.42) with the corresponding results obtained

from the Rayleigh-Rice theory [10] shows complete agreement.

4.3.3 Cross Polarization

As shown in Sections 4.2.1 and 4.2.2, depolarization for scattering by

small scale roughness is a second order effect in the plane of incidence.

1f, however, the scattered field outside of the plane of incidence is computed,
it will be found to have a nonzero cross polarized component. This result is
Jagl |

' and & are

simply a consequence of the fact that the unit vectors Gh v

not fixed with respect to the surface-centered coordinate system and they
change their directions as the observation point moves out of the plane of
incidence. This, of course, is a purely geometrical effect and it has nothing
to do with any change in the basic scattering mechanism.

The derivation of the results follows essentially the same pattern as
set forth in the previous sections. There is one point that should be noted
because it simplifies the algebra somewhat. For the case of the incident
field horizontally polarized (éh) and the scattered field vertically polarized
(&J) , the unprimed field quantities should be obtained from
E

, = E exp(-] i’i-a)sh while the primed fields should be obtained from

-

' - _i ity yae A
Hi Hoexp( 3 ki L:L)eh . For the incident field vertically polarized (ev)
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and the scattered field horizontally polarized (GH) » the unprimed fields are

+
obtained from Hi = Hoexp(-_jzi-;L)éh while the primed fields are to be de-

rived from E; = Eoexp(-j Ez';L)éﬁ . This approach is consistent with the

technique of obtaining all field quantities from the horizontal (éh or ég)

field for planar surface reflection.

= 1 1
With Eo Ho{uo7€o » the following expressions for § Ehv'~ and § Evh'

result;

2 . 2
koexp(—jkoR) cos9i c036851n(¢s ¢1)(€r-1) Er—sin 68

= E

[ ]
v TR o
(cosei +V€r+sin261 ) ( € cos 98 + Ver+sin208)

§'E, .\ = 8 Ee8

'ffexp [—j(_lz1+_l:i')--{_|_]csdxdy 4.43)

2 2
N koexp(—jkoR) EQ coseicosessin(¢s-¢i)(€r~l) er-sin Oi

1
h mR € [$]

-)
GIEVh' = §'Eed

2 2
(cos6§+ er-sin es)(ercos9{+ er—sin ei)

-ffexp[—j(ﬁi+ﬁi')-+d Cs dx dy 4.44)

where, in summary, the angles are defined in Figure 4.2, ;1 = x% + yy , and

A

-> +' Ny
ki and ki are defined as koﬁi and koki , respectively, where ki and

ﬁ; are given in (4.25).

When comparing (4.43) and (4.44) with the cross polarized scattered fields
resulting from the Rayleigh-Rice approach [10], ¢i should be set equal to % .
The expression for GlEvh. agrees with the results in [10, pg. 706]. The

expression for &E is, however, the negative of the a coefficient in

hv
[10, pg. 706, eqn. 9.1-69]. Normally this difference is not important because

hv'
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Figure 4~-2,

Geometry for bistatic scattering from a randomly
rough surface having only small scale roughness
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6’Ehv. 18 squared and then averaged to find the incoherent power. However,

if one is dealing with circular polarization the sign does become critical.

To resolve this issue, a special case can be constructed whereby ahv should
1. < &1

agree with uvv or § Ehv' ) Evv . This special case involves taking

. 1
¢1 T and ¢ 0 and 88 0 in the expression for @, or § Evv' and

. 1
comparing this result with &y and § E v for ¢, =7, ¢8 m/2 , and

[]
i 8 = 0. In this special case both 8'E_, and GlEh , should be polarized
| 8 Vv v

in the - x-direction. Comparing (4.42) and (4.43) for this special case shows

1 - &l
that indeed 6 E ) Ehv' . However, evaluating o, and L. from [10]
results in avv = -ahv ; consequently, there does appear to be a sign error
in the expression for ahv and (4.43) is correct.

] This section completes the development for scattering from a dielectric
; surface having only a small scale roughness. Once again it should be emphasized
that the purposes of Sections 4.2 and 4.3 are (1) to check the Burrows pertur-

bation approach against the conventional Rayleigh-Rice results and (2) to il-

lustrate the actual mechanics of evaluating the Burrows ‘expression for the
first order perturbation field. Hopefully, this latter purpose, if achieved,

should considerably simplify the transition to the composite surface case.

4.4 Bistatic Scattering From A Dielectric Surface With Composite Roughness

: For small scale roughness superposed on a planar surface, the Burrows
perturbation formula (4.3) is particularly easy to evaluate. This results from
the fact that one deals with the fields on an infinite planar surface and, for
such a surface, the fields are easily described and related through the Fresnel
coefficients, Snell's law, and the equality of the angles of incidence and

reflection. For a composite surface, the unperturbed surface is not planar

but it is assumed to be very gently undulating. More specifically, the unper-

turbed surface is actually defined such that it contains no spatial frequency
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components which are smaller than Yko » where Y 1s a constant which is
greater than unity. Of course, it is desirable to have 7y as large as pos~
sible but this is not always practical since the small scale height must satisfy
l.koz csz << 1 [6]. However, if Y can be made sufficiently large then the
scattering from the unperturbed surface can be treated using physical optics.

Physical optics assumes that the surface may be considered to be locally planar

and the fields on the surface can be accurately approximated usigg Fresnel
theory. This approach is recognized to be essentially the same as the small
scale roughness on a planar surface problem. The one important difference is
that for the gently undulating unperturbed surface, the local normal is no
longer entirely z~directed and, in fact, depends upon the slopes of the large
scale surface. This means that one must construct a local coordinate system
on the undulating unperturbed surface and compute the surface fields required

in (4.3) in terms of this system. This must be done for both the unprimed and

primed fields because they have different angles and directions of incidence
for the general bistatic case.
For the unprimed fields, the important unit vectors are ﬁi and ﬁk

which is the normal to the large scale or unperturbed surface. These two quan-

tities are important because they form the local plane of incidence. One next
constructs unit vectors alh and le which are orthogonal and parallel, i
respectively, to ﬁi and ﬁz . These unlt vectors are also horizontally and
vertically polarized, respectively, with respect to the local plane of inci-
dence. Any arbitrarily polarized unprimed incident field can now be decomposed
into components parallel to th and 8£v since the incident field must be
transverse to ﬁi . The unprimed field quantities required in (4.3) can then

be computed as in the previous sections. The exact same construction of Sih

and 82; and the decomposition of the primed incident field must be performed
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in order to compute the primed fields required in (4.3). Fortunqtely, this
is easily accomplished by simply changing 91 to 68 and ¢1 to ¢s in
the unprimed quantities.

Before getting into the actual details, there are a few other points that
should be noted. All of the above noted manipulations are goint to lead to
the following changes in GIE obtained in equation (16) of [6]. First, the
factor Fpp, is going to depend on € s the angles and directiQQS of inci-
dence and scattering (ei ,¢1 ,6; ,¢s) , and the slopes of the large scale or
unperturbed surface (Clx ’Ely) . The only other change is that the exponen-
tial inside the surface integral will become exp| 'j(§1'+§1')°;g] where
;2 = xX + y? + Cl Z because of the generalization to bistatic scattering.

Except for correcting [6] to properly include shadowing, as detailed in Section

2, all other aspects of the solution presented in [6] remain the same. Com~

bining 8'E from this analysis with Sancer's result [11] for essentially GOE
yields the total scattered field. Furthermore, it should be expected that for
backscattering the dielectric nature of the surface should have an almost
negligible effect upon the wavenumber at which the surface height spectrum
is partitioned into large and small scale sub-spectra. Finally, because there
is no discontinuity in magnetic properties across the unperturbed surface and
the conductivity is assumed to be finite, AE and Aﬁ in (4.3) will be zero.
This fact holds true regardless of any tilting of the locally planar surface.
The first task at hand is to construct 82

h
orthogonal to both ﬁi and ﬁl ,» 1t is given by

and elv . Since e,l‘h is

K. xA
&, ﬁ‘ ~ & .45)
&, <]

- A A =
where ﬁi kixx + kiy9 + kiz Z and the kiq »q=Xx,y and z , are obvious from

(4.25). The normal to the large scale surface is given by
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B = v . e TR T2 A P (4.46)
1L+g, °+ Zey
Expanding the cross product in (4.45) yields
€on = oy R+ hzy y+h 2 | 4.47)
where
h = (kiy “gz ~ kiz nly) : h = (kiz Mox ~ kii nlz)
Rox A 24 A
&,  &,| y &, x &,]
- (kix nly B kiy nlx) ?
22 A 3
|k, x &,

and alh is completely’ determined. For the unit vector sz » things are

a bit more involved because it must be in the plane formed by ﬁi and ﬁl

and also orthogonal to Gzh . For the reflected and transmitted fields ﬁi

A

goes to kr and ﬁt . This will not change the direction of & because

£h
ﬁi ’ﬁr and ﬁt are all coplanar. This will, however, alter the direction of

)

LI this is easily understood by noting that ﬁq . elh , and & form a

v

mutually orthogonal triad of unit vectors. Thus, if alh does not change

direction but ﬂq does then alv must necessarily change direction. What

this means is that we must find a new élv for each value of ﬁq . This is

easily done by the following equality;

29 =2 o Y
v " % x kq (4.48)

where q =1, r, and t . Note that it is not necessary to divide the rhs of

. (4.48) by the magnitude because it is unity, i.e. azh
q

orthogonal by (4.45). The unit vector ézv may also be written as

and ﬁq are mutually




i
H
{

e

E‘L- T c+vig+viz , 4.49)

L Vox Ly Lz
where
v<l=-(k h, -k _h,) v,d= ok _h, -k _h,)
Lx qy 2z qz Ry Ly qx Rz qz  x
vode ok _h, -k _hy)
Lz qx Ly qy fx

and 62,3 is completely determined for q =1, r, and t . For the primed
Al AC[' . -»> > -
fields, €t and €ov are obtained by merely replacing kq by kq , 9= 1,
r, and t, in the expressions for é‘zh and ag‘v .
The incident, reflected, and transmitted unprimed fields on the unper-
turbed surface will now be decomposed into locally horizontal and vertical

components. If the incident field is of the form Ei = Eo exp (-] -lzi:rl) 88

T

~ b 3
on the unperturbed surface where ea is its polarization direction then Ei N

Er and Et can be written as follows;

> r a AT
Er Eh € + Ev ) (4 .50)

where

Ep = Ejexp(- 3k T)) (€8, )

Eg = E exp(- jiq-?l_?/_(sa-e&) (4.51)
and q=1i, r, t . The corresponding magnetic fields are given by

‘ﬁ- -—O-EXE—/E_—E
Bl Sral* 9 8q¢

o

m
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where th =€ for q=1iandr, and 6, =1 . Expanding (4.52) yields

€
=42 (.t ia
[ V“o ( En ®ov * By elh)

H, - %%(_Ezglv+Esglh)
From Fresnel theory, the alh-component of ﬁr is equal to Rv otimes the
azh—component of ﬁi , ?o *
E. =R, E‘i, %.53)

<
Similarly, the ézh—component of Kt is equal to Tv times the ﬁgh-component
'3

-’
of H1 » 80
E 4.54)

Equations (4,53) and (4.54) can now be used in (4.50) to express all of the

i i
fields in terms of Ev and Eh , 1l.e.

> 1 1 A1

E, = E &, *E e .

b 4 1A i1

Er thEh elh + vaEv €ov (4.55)
T

=1 1A v ~

e " Tn o S T2l
e,

OThe subscripts "%" on Ry, Ry, T,, T), means that the angles in the appropriate
Fresnel formulas must be defined with respect to the normal to the large scale
surface, ﬁz .
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where E: and E‘ir are given by (4.52) with q=1 . The corresponding -IS-fields
D E, , D E , D E fleld btained
are; D1 € {0 D €E, € eoer - The primed fields may be obtaine ‘
” *h s Ay 4 Q.02 9 -

from (4.55) and (4.51) by replacing kq by kq » & by eghs oy by €y and o

by changing 38 to whatever scattered field polarization is to be sampled,

say, Gb .

The appropriate form of (4.3) is

k2exp(-jkR) . .
1+..\ - [e) [o) +.I\ > oa - -).+
SE &, Y E] e [(AE nl) o nz) AD E'] ;Sd So (4.56)

| %

3 where the shadowing factor has been temporarily omitted from the integrand
since 1t can be added at the end of the development. The (AE-ﬁZ) is equal

. S SN . A A
to (E1+Er~Et)'n£ or using (4.55) and noting that nosep = 0,

}
. = 161." Ar.* vg' AtQ" ﬁ
INA ﬁR, E ‘elv fiy + Rvg, e, g = - ey nz) 4.57) L
T I

(4.57) can be simplified somewhat by using the relationship that results from

ADefi = 0 . The final result is

(e_-1) R .
sEed, = E —-Ef:- T, (@8, 4.58)
€
r
For 3"61 s
~ i' A L ~
B'eR, = E € VE_ Tv'z(ez:, ) . (4.59)

8o the product of (4.58) and (4.59) can be written as follows

= 2 > > -+ ' a toa A t'./\
(Aﬁoﬁl) o' '62) - Eo exp l;-j (ki'l-lc'i)or_l_] €, (Er-l) Tvz Tvz(ely nz) (eR.v nz) (4.60)
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It can be shown that

g.t ‘. - sinezi
v 2 /—-
€
and
1 ]
at! si.nf)’z'1
elv '“R, * /—
€
where E
sin Bu,t VI (k .ﬁl)
’ Crea 42
.  sin eu 1 - (ki nz)

80 (4.60) becomes

\/1-(12 8,2 ;/1-([2'.3 )2
(Af'ﬁ (3' 'ﬁ ) » E € (8 _,l)T \J 4 L i
Ve VIL €,

exp[- 3 (ﬂi&;) .;2]
(4.61)

For the remaining term in (4.56), the important parts are (A-ﬁ)lJ and

(-IE')p where the p~subscript denotes tangential to the large scale surface,
+
i.e. the normal component of D 1is continuous across the boundary so A-15°ﬁl-0 .

> :
The tangential components of the AD-field can be found by decomposing AD into s

components directed along e!.h and T, , vhere T, = f, x 8% , 1.e.
> A A *.A A
(AiS)p - @bee, )8, + DT,
Using
- 1 _ 1fa _ )
& eth(1+ha €r Th ) gh *EE ( !,V+szelv T "—elv
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and simplifying this expression with the aid of

. T
o B AT A Vi oAt a
(e oT ) 4+ R (e T ) - — (e .T)
ZV 2 Vl v % /é—l-_ v

which results from (AE)p = (0 yields

€

- i - ~ - o i - ’ ’\t.’\
(AiS)p €, E, <1+ha)<er ne, - E, Tvz(er 1@, D
r v :
(4.63)
The appropriate expression for (E' )p is
Tl
LI A RPNY L
@) = T el +ES — (6, *TT) (4.64)
P h, £2h v v 7S
2 Ve,

since on the unperturbed surface E' - §'1+E;_ = E;: . The relationship for
(AE)p(E')p is obtained by taking the dot product of (4.63) with (4.64). Com— *
bining this result with (4.61) and substituting into (4.56) yields the follow-
ing result;
2
. Eoko exp(—jkoR) A AL >

(4.65)

1
where § Eab

polarization 6‘ and scattered polarization Sb , I(x,y) is unity on the

is the scattered first order perturbation field for an incident

illuminated parts of the surface and zero for the shadowed parts, and




(er-l) " I 2 2 ~1 i T"R. TVR, ’
- A . A .A N
rab 4 1 Cﬂ.x CR.Y (ea e!.v) (eb €ov ) e 2 € ain 621 8in eR.i
: r

+ / —sin 6 l/e -sin Gii

(ii-ﬁi - @y ky) @y k)

+ (& Y&, - )T T'
s:l.ne,z'is:l.nemi ) a kh b !Lh lhﬂ,

a3 o D P A ML e S0

k. ek.' - (n,°k,)(n,°k,") v
. i1 £ 717V 71 A ' L .‘/ 2
+ (eae )(eb eR.h)T P er—sin 5]

sin 921 sin 9,'9.1 2 1

NPT ) I TonZa || B G xED
+ (eb.e!.v)(ea.elh) Th!, —_ er—sin 62.1 (4.66)

€, sin 61 sin 92:1

For convenience, the above terms are summarized below

”»n

ea = Polarization of the incident electric field (-ﬁi = E:: 83)

'éb = Polarization of the scattered electric field (ﬁs = E:E )

A

'szsx - ;R‘yy +z

n nz =
2
g /1 + C!'x + Czy
; -+ A -~ A ~
! kj.=k0ki H Ei =-sin91coa¢1x-sineisin¢iy—coseiz
i
] > A A ~ ~ A
1 L. 1 ] - L - -
ki kolc1 H ki s8in es cos ¢sx sin 68 sin ¢sy cos Bsz
é; A A A ~
L
; e ..En_g'_ e! ,.ﬂ 39.1’82, xk At'.glh &
! £h &oA Lh A v h 1 v i
ke, xn, | k! xn|
ENRA | '
sin 8, = [k xn| sin 0] = kg x a,

-»> A A~ A
rz-xx+yy+c2z




1]
Zercoseli . Zercoseli
Tv - Tv =
2 - 2 L ] - 2 [
€. coseli + Ver sin Qki Er,cosezi + Ver sin ezi
L
2c°89§; . 2c036£l_
T = T =
" ] +V-126 e e'+Ve-1n29'
Co8 Uoy ¥ YE,—8Im Uoy co8 Yos r ° 21

Attempts have been made to compare (4.66) with the equivaleqt factor
resulting from the "tilted-planeh approach [5] but,‘unfortunately; the cor-
respondence is not easy to establish. It appears that such a comparison
might best be accomplished by comparing numerical values of (4.66) with the
corresponding factor from the "tilted-plane" approach [5].

Equation (4.65) is the desired result. From this expression, one can

L]
easily obtain oab from
5° o lmlin fam? 1 [<|60E 12 4+ <|6'E ’2>] %.67)
ab Rrw Ao A EZ ab ab -
o

along with the development given in [6] and as corrected in Section 2. The

contribution of the zeroth order incoherent power <|6°Eab|2> has been previ-

ously obtained by Sancer [11] and his results can be used directly in (4.67).
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5.0 A USEFUL RELATIONSHIP FOR THE JOINT SLOPE PROBABILITY DENSITY FUNCTION

5.1 Background

The incoherent power scatt;red in and about the specular direction de-
pends upon the joint probability density function (jpdf) of the large scale
slopes. The jpdf for the large scale slopes is also important in determin-
ing the degree of "tilt" or k-space broadening imparted to the émall scale
Bragg scatterers. Ideally, one would like to measure the jpdf for the large
scale slopes, the roughness specfrum of the small scale heights, and the com-
plex dielectric constant of the surface in order to predict the average scat-
tering properties of a specified section of terrain. That is, these surface
measurements would be substituted in the rough surface scattering model which,
in turn, would provide an estimate of the average coherent and incoherent
scattered power., From a practical point of view, measurements of the jpdf
for the slopes and the small scale roughness spectrum are very difficult to
obtain and the difficulty increases as the radar or electromagnetic wave-
length decreases. For example, in the case of an L-band system with
Ao = 30 cm, the small scale part of the scattering model will require sur-
face height spectral measurements of surface undulations having wavelengths

of less than about 90 cm because A = (AOIZ)csc 61 for backscatter.

BRAGG
For the large scale features of the surface, the jpdf for the slopes repre-
senting surface features having spatial wavelengths greater than about 90 cm
is required. Obviously, spectral information on the small scale features is
going to be the most difficult to obtain. However, even the jpdf for the
large scale slopes is going to be difficult to estimaté. It is not unrea-
gsonable to expect that we can obtain measurements of the jpdf for the large

scale heights and even the correlation function for the heights at least some-

what close to the 90 cm spatial resolution. However, this information must
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somehow be translated into the jpdf for the surface slopes and this is where

the difficulty comes in. We ignore the possibility of a direct measurement
of the jpdf of the large scale ;lopes for arbitrary terrain because such a
task appears to be too difficult to even contemplate.

The question basically boils down to the feasibility of tramslating or
converting measurements of the jpdf for the surface heights into:the jpdf for
the surface slopes. The purpose of this section is to point out.an analyti-
cal means for accomplishing this.transformation and suggest that the scheme
be attempted on an experimental basis. The relationship is not new and, in
fact, results from some earlier rough surface scattering analysis. However,
it has apparently gone unnoticed at least insofar as it applies to this very

real world problem of translating the height jpdf into the slope jpdf.

5.2 The Transformation

Perhaps the oldest approach to estimating the quasi-specular incoherent
power scattered by a rough surface is now called the autocorrelation approach.
Basically, one assumes the validity of physical optics, interchanges the
order of spatial integration and ensemble averaging in the expression for the
scattered power, and assumes Gaussian surface statistics with the final re-
sult that the average scattered power is dependent upon the behavior of the
surface height correlation function near IA;I = 0{1] . In the mid-60's,
Kodis [2] showed that the average scattered power could alternatively be
interpreted in terms of the number of specular points on the surface and the
abgsolute radii of curvature at the specular points. Barrick [3] subsequently
linked these two approaches in the high frequency limit where both are valid.

In the process of establishing the similarity between the authcorrela-
tion and specular point approaches, Barrick obtained a relationship between

the jpdf’'s of the surface heights and the surface slopes. In particular,
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if PC z (;x,cy) is the jpdf of the x and y surface slope components and

chcz(kx,ky) is the joint characteristic function for the surface heights

Ly (x)5y;) and Z,(x,,y,) then [3]

qx q
P (; B’ - — c PR —1) = -— Rim =k q ,k =~k q A A )
SENE TG TG e e Po5, Txy

* exp(] koinx + j koqy Ay)dAx dAy (5.1) 3

where Ax = X - X%, and Ay = y, - Y In (5.1) the quantities qx,qy and

2.
q, are limited as follows; |q1| <1,1=zx,y,z. It should be noted that

both ¢ (*) and P (*) are implicit functions of the surface height
% Cny

correlation function; this is how the (Ax,Ay) variation comes about in (5.1).

If an analytical form for ¢ is available then (5.1) can be used

C1%2

directly to obtain the jpdf for the slopes. In cases where OC r () is
152

obtained from measured data, it is not immediately obvious that (5.1) is of
any practical use since the behavior of the joint height characteristic func-
tion will not be known in the limit of ki+m and ky+@ . However, consider

(*5°) .

the following reasoning as a means for obtaining estimates of PC r
x’y

Since °§ z is the two-dimensional Fourier transform of the jpdf for
172
the height, it can be obtained numerically by using a Fast Fourier Transform

(FFT) on the measured jpdf height data. The result of this operation will be

L, ° Because of measurement noise and particularly quantiza- j
152

tion noise in the measured height jpdf data, Gc z will be limited to values
1°2

less than, say, k §_K and k ﬁ_Ky . The maximum value of ko that can

denoted by )

be achieved in (5.1) is therefore max(K /qz Ky/qz) 1f q, is small then

the resulting maximum value of ko can be very large. The transform variables
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in (5.1) will be given by !(qu/qz and quy/ q, which may also be large,

depending upon 9 and qy « Thus, if q, is near zero and 5; z is com~
. x°y

puted using the following;

L .
q q q 2 ;
s (C -__l’g "“l)'_z—' 3 (k_=K_,k =K ;&x,4y) :
Cny X Qz y qz 4.“»2 CICZ X X y Yy ‘
l(qu K 9 .
. exp(j E X Ax + 3 LE Ay) dAx dAy (5.2)
a, q,
it may turn out that P is a sufficiently good estimate of P as to

cxcy Cny
be useful in the scattering model. Unfortunately, this approach breaks down

when q, or qy = 0 ; however, it may be possible to get close enough to

qx=0 or qy-o to infer the behavior of P along these lines in the

Tz
X7y
qx,q_y-plane. The limits on the integrations in (5.2) symbolically denoted

as *L , will be determined by the correlation length of the surface, i.e.
the separation distance for which the surface height correlation function
is essentially zero.

An alternate approach to estimating PC z is to examine the asymptotic
x>y

behavior of & as k_+K and k K . From this behavior, it may be
%1% x x y v
possible to generate an asymptotic functional dependence of $c z on kx
1°2
and ky . By repeating this procedure for different values of Ax and Ay ,

it might be possible to also generate or build-in the functional dependence

of & on Ax and Ay . In this manner, the dependence of ) upon
ClCz r,lcz

kx’ky’Ax’ and Ay is obtained at least in the limit of moderately large kx

and ky . This functional form could then be transformed according to (5.2).
The major problem here is that the accuracy of the result will depend directly
upon how precisely the surface height correlation function is known near

Ax=0 and Ay=0 . This statement results from the fact that the behavior
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of the transform of a function as k+ = is directly determined by the behavior
of the function as Ar+0 [4].

The problem of converting height jpdf data into slope jpdf results is
definitely not easy. Even with the use of (5.1) the problem still poses a
number of numerical complexities, primarily because of the required limit as
kb-*“ . However, as discussed above, (5.1) does provide some ho?e in solving
what is otherwise a totally untractable problem. It is felt theFe is suf-
ficient hope as to warrant furtﬂer investigation of the utility of (5.1) in

the solution of this problem,

References

1, Isakovich, M., "The Scattering of Waves from a Statistically Rough Sur-

face," Zh. Eksperim, i1 Teor., Fiz., 23, pp. 305-14, 1952,

2. Kodis, R. D., "ANote on the Theory of Scattering from an Irregular Sur-

face," IEEE Trans, Antennas & Propg., AP-14, pp. 77-82, January, 1966.
3. Barrick, D. E., "Relationship Between Slope Probability Density Function

and the Physical Optics Integral in Rough Surface Scattering," Proc. of

IEEE, 56, pp. 1728-29, October, 1968. 1

4., Morxse, P, M, and H. Freshbach, Methods of Theoretical Physics, Vol. I,

McGraw-Hill Book Company, pp. 462, 1953.




MISSION
of
Rome Air Development Center

RADC plans and executes nresearch, development, test and
selected acquisition programs in support of Command, Control
Communications and Intefligence (C31) activities. Technical
and engineering support within areas of technical competence
48 provided to ESD Program Offices (POs) and other ESD
elements. The principal { mission aneas are
communications, electromagnetic guidanse and control, sur-
veillance of ground and aerospace objects, intelligence data
collection and handling, information system techmology,
Lonospheric propagation, solid state sciemces, microwave
physics and electronic reliability, maintainability and
compatibility.

{’Mm

. ) . e b i R A
. s e b e R A N ST s A SRR e s TR ;
s v w0 4 ey SRR LA MR et 4 - AR s e M A :




